MSRPC Heap Overflow — Part Il

Dave Aitel

So a new approach is needed. As with any heap overflow, you get to chose a
“where” and a “what” value, subject to certain constraints. If you chose a what
value that is the address of a writable memory location, that particular allocation
will succeed, and the next allocation/free may cause a access violation. This can
be useful in many circumstances. For example, if you know that the codepath you
are in will call a function pointer, and you know the location of your attack string
in memory, you can reliably jump to your attack string.

However, there are also some advantages to having a “what” that points to a un-
writable memory address. This will cause the very next instruction to cause an
access violation exception, which, in certain cases you can control. I normally
prefer the first method, since it doesn't rely on operating system and service pack
version. It's possible that the first method is still possible in this exploit. To test,
you'd have to see if there are any function pointers called after the heap
corruption word-write is triggered. For example, eEye mentioned a function
pointer in rpcss. However, with all the modifications to rpcss that have been
happening recently, I don't feel comfortable relying on a magic number that is
dependent on that module.

So let's back up a bit, to the point the corruption happens. We can do this by
setting 0x01020304 as our “what”. Then I do all this:

1. Run the attack

2. Wait for break on access violation in heap allocator

3. Use debug->Open Run or Clear Run Trace

4. Modify the EAX register to be a writable address (0x7ffdf080)
5. Debug->Trace Into.

The results from that little test simply show that modifying EAX doesn't change
the corruption enough to let the program continue where it needed to go. So I
don't discover any magic function pointers. Finding function pointers via Ollydbg
is really easy, as long as you have a breakpoint you can set just after the overwrite
occurs. Perhaps we'll save that for another time though, since the correct way -
trapping on every allocation - is a pain.

Ok, so back to plan B. Which was setting a invalid address (0x0102034) as our
“what” value, and seeing what sorts of magic we can do from there, assuming our
address will be non-writable.

Steps:

1. Modify the kernel32.UnhangledExceptionFilter to null out the jump if it
discovers the program is being debugged (Look for a ZwQuery... then a cmp
jmp of some kind)

2. Run the attack (with 0x01020304 as “what”)

. Wait for break on access violation in heap allocator

4. Shift-F9 to continue and send the exception to the program's exception handler
routines. Normally this would then result in a “This program could not handle
the exception and will terminate” message. As a side note, you can get OUT of
that message by hitting f7 again and letting it catch the exception. That way
you can try a few different things before it exits.

w

The program will die executing instruction 0x01020304, but this gives us the
unique perspective of what exactly the stack and registers will look like when the
exception is handled by our function pointer, assuming we send the function
pointer into a .text page somewhere.

OllyDhy - svchost.exe - [CPU

- thread 000001DC]

[c] File | Wiew Debug Plugins Options Window Help

S E3
=18l x|

lelx| wln| wis) 30 A) o] elm|v|wn]c|s Kl 8[r].]s]]

Eild

Registers [FPU)

ER- I B
ECy BEaAG51A]1
EDX FFFFEFEFF
EEX B88EEEE0
ESF BESSF2AS
EEF BA95SFGHC
ESI @83sFehd

EDI FPPESAESS

EIF Blezozad

STA empty
STl emptu
STZ emptuy
ST2 emptuy
S5T4 emptuy
STE emptuy
STE empty
ST7 emptuy

LastErr
EFL B@aa@zaz

B ES BB22 22bit
B L5 BAlB 22bit
8 55 8823 I2bit
8 DS BBz 22bit
B F5 BA3B 32bit
S G5 gEE8 MHULL
5}

KERHELZ22. PFESAESS

&L FFFFFFFF)
B{FFEFFFEF)
& FFFFFFFF]
BLFFEFFEFF]
FEFDARBE!FFF

ERROR_SUCCESE [GABEHEGEE)
[MO, ME. ME, A, MS, PO, GE, G)

+UMORM BE10 AR42IFIFC @R42FD
—777 FFFF 7vFS7all ¢7rF32B95
—UMORM FREE TPPFOBEE FPFSPE
—UMHORM 2BE4 BEEGEEE1 AR42FA
SUISSFSSSPS?SE?SSE?GBE 4332

MORM 1E

44 BEIEEEI0 BEERSTE

+UMORM @258 YEAI4B889 FEAZ4E
+UMORH 29D8n?5834829 B4 3FC

B0

Addres |Ualue |ASCI| Comment 77EEAFDC] FETURM %o KERMELZZ. TPEERFOG =
e e =] TR R IR A |833EE§E% S ESREDS| KERNELE2. 7PESRESS

F1663@64 | FEFFFEFE .

91092002 | pRoRGEEE| ., . . BEISESEY | GRARAEEEA

51003060 | BAEREEEE : BEISFIBE| BEISFEOC

B1ABSA1 0| BRGEREEE s ZUFSFSEL) BEaaanil

S1682014| pADRGEEE| - .. . BEISEECH| ORAROEEE

BlEE3A1E| AEETT2ES| @0, | FASSF3C4 | FPFB2B9S| Entry address

At e | o PE9SFICE| 7PFS7Eld|ntdll. 7PFS7610

H16AZAZ0| BAEFEREE ., - . BEISFICC) GRAAFFFE

B1083624| 0BB74310) bi. . DHGEraD4| SoRECeE4| FETURN ¢

FlAR2EZ2 | ADEEEEEL | . . . o ntdll.LdrGetFrocedyredddress+17 forom ntdll. PPFEFIRA0

H1BE2E2C| BREF4EFS| “H- . | UMICODE "Fpcs BAIEF202 YrrFaaEa| rasadh lp. 7 PFEEEE

B1BE3E5E | PHEEHEEE| s pisll A P]
F1002A24 | EEERGEEE| & .. .

F10AZAZE | BEEEEREA : EEYSFSES] GE4SFATY

51003020 | BADEGEEE 3 BA3SFSES 02AGAGA1

51002040 | BEDEGEEE : PEISFSEC| DOBAgBS4

F16AZA4 4| BEEEEAGA : BEISESFE) GRABAEREA

e R e A FESSFIF4| 7PESIB66| RETURM to KERMELS2.7FES9ES6 from KERMELSZ.7FESTSSE

et e OEOSFSFE| 7rF@End| rasadh Lp. 77 PFEOEE

F1EASASA| AEEREAGA = e =ik L a0

91082054 | ERDAGERER| - | . |) CO25F400) 0RAGARGA -

|Access violation when executing [01020304] - uze Shift+F 7 /FE/FT Lo pass exception to program

#start]||) @ =3 || ECWINNTSystem32.. |3 OllyDbg - svchost.e...

At this point I look both up and down on the stack. I right click anything that

| | Faused

ELB 7.33aM

looks like a heap address and click “Follow in Dump.” Of course, if it doesn't point
at a valid memory address, Ollydbg won't offer a Follow in Dump option. This can
take a long time. Someday I'll have a bevy of Ollydbg plug-ins to take care of this
sort of thing, but for now, I just do it manually. It would also help if Ollydbg's

§ tring recognition” feature had an option to detect very short strings.

OllyDhy - svchost.exe - [CPU - thread 000001DC, module OLEAUT32] HE B

[€] File View Debug Plugins | Options Window Help — =] x|
i3z : [
@lefx| wn| Wi $1E M o LlE[m|T|W/H|[Cc|/[K[B[R|..|8] iE[H]?]
TTOIAEEG] EESG 74 TALL DWORD PR oot LEGR+rad
TPALAFAC| BE PUSH_C5 | Feaisrers (FPU]
TPOIOFAD| SEB72 1@ MOU ESI,ONORD PTR OS: [EBX+18] EnpEldeade
PPOIOFEA| SEEBE S4G@EEEE |MOU ESI.ODWORD PTR OS: [ESI+E4] ELd: aopamial
FPALAFES| S34COE 18 FF | OR DWORD PTR DS: [ESI+ECH+181,FFFFFFFF e
TTAIAFEE| SBT4z4 13 MOU ESI,ONORD PTR S5: [ESP+12] EEf R
TTAIGFEF| &R 18 FUSH 16 Eer e
SCOMRFCE BR cmmmscrr | MO EGR,0LERUT3Z. P7ICESES o ok e
rhHE G SRR e EDI vrESAESS KERMEL3Z.77ESAESS
[B el el R O
PERIAFCD| G3AR FF GR DWORD PTR_DS: LEDR1, FEFFEFFF b, B L L O LER R
FROIAFDE|~ EB 36 JHP SHORT OLEALTEZ. 7rR1EGES it e e A A
PPAIOFOZ| SE74Z4 18 MOU ESI,0NORD FTR 55: [ESP+181 S e e el e
TTALAFDE| SE4E 18 MOY EGH; DWORD PTR DS: [EBX+181 g P doci oDl ER RERE REL
FPALAFDD| &2 FUSH E0R Sl e
CORIBEOR| FE7S o PUSH DUORD PTR 033 [EBK+C1 it
TTAIAFOE| ES DES20808 | CALL OLEAUTSE. TPAZBZES B0 6 Losterr ERAOR_SUCCESS (0B0BBE60)
PPOLOFES| S5CE TEST ERH, EAY EFL 98838282 (MO, MB, NE, A, NS, PO, GE, 6]
FPALAFES|» 7C 21 JL SHORT OLEAUTSZ.7PA1E80S
5T@ empry +UNORM GA10 AB43FO7C GE43FD
IPRIAFES £H 18 FUSH_ 19 ST1 emptu -?77 FFFF 7PFA7618 7rFO2E95
TPAIGFES| EBF 1B249B77 |MOU EOI, OLEAUT3Z. 7P9B3418 Ts o L ORi Fhch -oorbans rocoss
CrRIHERE R RORGEOR w275 enptu -UNORH SEE4 BBBOGEE1 DE4SFA
: ST4 emptu 3, 139735379752729576Ae-4332
STE empty +UNORM 1E44 BEIEAALD GEEE7E
5T6 empry +UMORM GO06 7SE34065 ToO34E
ST7 enpry +ONORIY 2508 75034009 0043FC
Address [Ualue ASCI| Comment W 9935FACS | BEISFAFC -
BEBEECFD| 41416647 | 6. AR sl | Relalal bl
: ea95FA0E|| 77FE3976| RETURN to ntdlLl.7PFE2978 from nrdll.7PFE3998
AREEESF4 | BRACE141| AD. .
aassFAne| | peerasae
GEEEESFS | BAZE364| +e80 eS| Pl
AEEEESFC| 7PEEB44C| Leew| KERNELSZ. TPEEG44C
aascraoc| | eesaaoas
GEEEESDA| 41414141 | ARAA
a@3cFAED || eees1Es
GEEEESEY| 41414141 | AAAA
aa9cFaE4| | @ascFADa
AEEEESHE | AAREFEER| Su. .
aaosrAES|| peaalzae
AEEEESAC | RERGEEEE| . . . | DSEERED) [poca R0
QEEEES 16| OREEEEE| 1. . .
AESEFAFE|] PPF22E95]| Entry address
QOEEED 14| DOREEEEE| | . . |
amssrare| | Frrsases| nidl. FrRassEs
GEEEED 15| AORREEEE| | . . |
889cFAF || FEFFFFEE
AEEEES | C| RRBGEEEE| | | | | o eEHEe) PERERGEER
AEEEESZE | DEBBEEEE| | . . |
aao5FEea|| 77FCEZ27| RETURN to ntdll.7PFCE227 from nedll. PPFE392C
T -
aascrEad| | aararse
QEEEESCS | EREEEEE| 1. . . et Pl
QEEEESCE | AARREEEE| | . . |
e eo9cFEaC| | 74FE9256| neafd. FaFESIER |
R aaocrE1| | asEEZES
AREEESS | RRBGEEEE| | | . |
aaocrE14|| posaazen
AEEEESSE | RERGEEEE| | . . |
e Coopaaa I aeicreie|| enosriec
i 8ESEFELC|| 7PFE2E9E | Entry address
HBUBE S BUBRREER) s eessreze|| PrFeasEs| ntdl L. TrFeIsEs
GEEEEDA S| AERREEEE| | - ErpEee]| peacr e e ad
|.-'3«ccess violation when executing [01020304] - use Shift+F7/F8/F3 to pass exception to program | Pauzed

#start| |] & <1 || BCWINNTISystem32. . |[3 OllyDby - svchost.e... BB 816AM

In any case, there are a few pointers to memory we control on the stack. For

example, we get two bytes at ebp+0x74, and we get a lot more at ebp+0xb4. For

now, I'll just use the ebp+0x74 location. To reach it, we have several options:

- Call [ebp+0x74]

- Jmp [ebp+0x74]

- Find the esp offset and use that as above

- find a code sequence that does something similar to any of the above, like pop;
pop; jmp [esp+0xXX]

I normally use “View->executable modules and click on any module to view it
and then hit space to assemble a command” to find the hex bytes of call
[ebp+0x74]. This corresponds to: ff 55 74.

I used view->memory, and then Control-B for search to find this sequence in

OLEAUT32.0x77alafa9. This is a text page, so it's not writable, which is what we
need. Note that for the search, you'll have to click “case sensitive”.

So now we'll replace the “what” address with the address in OLEAUT32. And we'll
put a “\xeb\xfe” at the end of attackstr (actually, at the location of “what” - 8).
Hopefully this will get executed and after the exception the code will jump to our
string and run our infinite loop. When the exception occurs, don't forget to look in
the title-bar for the thread-ID.

What should happen is that your exception will occur (“Can't write to memory in
OLEAUT32”) and then you hit shift-f9, and the exception is handled by . . . you!
But you've chosen to just loop. So VMWare will churn and become sluggish and
horrible. Hit F12 to break out of that and the right click in the disassembly and go
to Thread-> (thread ID you memorized) and you'll your code executing. It should
look like this.

OIIthg - svchost.exe - [CPU - thread 000001DC] [=]

File ‘iew Debug Plugins Options Window Help =] x|
L) ‘l u e =] HEE
SIex] 0] %% 511 3] =] mlz/melwa]elr la[as] Elji7]
41 IMC ECH Registers (FFUI

BEGASF0E| 41 INC ECH

sansrme of it £ ERY T7BIAFED DLEALTSZ. 7oA1HEHD

BEEASTOT| 41 INC ECH L EEEEEEEE

BEGASF0E| 4 INC ECH Eon: EEASEEES

BEEAST0S| 41 INC ECH Eoh: BEEEIEs

G i

A ol i oot EOT PPESAESS KERMEL3Z2.7PESAESS

PBoRaTDe| 41 e Ecd e el
C 8 ES @822 32hbit BLFFFFFFEF)

2aaAAF0F| 41 INE ECH F B C5 Gt 32bit BIFFEFFEEF]

BGGAS7ER|~EEB EF JHE SHORT @@ersrOl B8 SS90z Sabir ofFFEFFEFE)

Rl ot IHEhECS Z @ D05 @B22 32bit BIFFFFFFFF)

R LhesEy S8 F: GBoE S2bis FFFDAGDELFFF)
TG G5 o688 HULL

R o e £ =i

ey et 08 LastErr ERROR_IO_PEMDING [GG@8G3

GEDROTES B9 EALPPAC TEST ERx ac77AIAF EFL 9GEE@282 (MO, NE.ME, A, NS, PO, GE, &)

+

BOGBASFEF |« 77 41 JA SHORT GagA9332 BTy o R DoPasera SrEastas

ety o I ELS ET2 empty —LUNORM FREE 777FEEEE 77FE7E

A i et w0573 erptu —UMORHM SES4 AEGRAGE1 BG43FG
5T4 empty 3. 138795875752 7R85 ERe—d4922

ECH=2BA230CE S T L e
STE empty +UHORM GE0G 7SEI4E63 7SR340
ST7 enpry +UNORIT 2508 ?5334309 BO43FT

TTAIAFAC| RETURN to OLERUTSE. 7P AIGEAG

gfgg;;ga g?éEEEEB EfEi E?ETT?;?FCFE 20 G5SSEEEd| rrEBAFOC| RETURN to KERNELSZ.rrEBRFOC =

e A 2 BOSEEEEC| 7oRSAEDS| KERNEL3Z. 77ESRESS

01603602 | BRARGERGE]

©1PO3EAEC | BREEREGE| OOADEELE i gedda Y

B1603610| GRARGAAG]

51P03814| BREEREGE| | . .. BBISEECS(aBERHaon

B1603612| BRaT7 200 A - . e uC | Aaagabg

A109361C| BEAFrzag| Br- . e

01603620 | BRATAERG] ., - .

01P03824| BEEP4916| k1. SEEEDD) e I

01603622 | BRABGEE] | B, . . A e el

@10a3020| paa74SFa| °H:]| UNICODE "Rpcs | BRZSEEER) Saueend

A10P3630| GEEEEAAG]

01693634 | BRARGARG] AESSEEES| Q@BARaad

§1P03E2S | BREERoGE| . .. 9B3SEEEC| aBERAAOD

01693620 | BRARGARG| L . . . AOSSEEFE| ARBaRaad

§1P053E46| BEEEREGE| | | .. GOISEEF4| aBEAEAEOD

01603644 | BRAAGARG GESSEEFS| GRBARAad

§1P03042 | BEEEREGE| | .. GBISEEFC(ABERAAOD

o AESSEFDE| AeBARGGE

51P03E5E| BRAEEEEE :::: R

91093654 | BRRAGGRE © Qi CocoErad) gononon: -

| Mews thread with D 00000764 created | Paused

Mstant| | (4 @ 3 || B CIWINNTSystem32... |3 OllyDhg - svchost.e... LB 841 AM

Well, so now we reliably have our shellcode executing. We move to the next
stage, which is “What to do with our shellcode”.

It's here that we want to discover any filters being placed on our shellcode, look at
how big our shellcode can be, or deal with any other issues our shellcode is going
to have to deal with.

Now, we don't have much room, in Win32 terms, for our shellcode. We have
something just over 500 bytes. My Win32 shellcode that will put a lock hold on a
process so no other thread gets a chance to crash it is something just over 900
bytes. We could squeeze it down in many ways, since we know exactly what

version of Windows we're running on. But this solution is onerous in terms of
maintaining thousands of shellcodes and optimizing them all.

CANVAS does have another solution, which I like to think is more elegant. This is
a tiny shellcode that will search all of memory for another shellcode, which it then
executes. So my exploit is now this:

1. Shove the large shellcode into memory somewhere. (CANVAS includes a
function to do this)

2. Run the heap overflow request with tiny searchcode

3. Run the dcedump request to trigger the magic

We have to do some trickery to get back far enough into our buffer to have the
150 bytes or so we need for our “tiny” shellcode. A small stub of “call back, pop
ebx, sub 400 from ebx, jmp ebx” gets us back into where we need to be. And we
have to make sure that neither of our shellcodes is getting corrupted as it is stored
in process memory. This may take some wiggling of various offsets, but is
generally quite easy.

This method works to get our tiny search shellcode into memory and executed
and then our much larger stable shellcode executed. From there, the rest is gravy.

e] immunity CANVAS (http://www.immunitysec.com/CANVAS) o B/ X

Action Helium Listeners Logging MNetwork Dump

Current Local IP Address: |192.168.1.103

Name Description [=] [~
7 Exploits CANVAS Exploit Modules — Lz
[> SaL Injection WVarious tools for expleiting SQL Injection Vulnerabilt r -
= Windows Attacks against Microsoft Platforms | 1D | Informati ‘
Insight Compagq Insight Emulator 2 [Win32: i
MS RPC Overflow MS RPC Stack Overflow (MS03-026)
Abyss Abyss Webserver < 1.1.6 heap overflow
WebAdmin Mdaemon WebAdmin Stack overflow in User variabl
Cacophony Stack overflow in MediaServices.
RealServer Overflow Overflow in RealServer 8.0.2-9.0.2
1S 5.0.1DA Remote Stack Overflow in .ida module
1S 5.0 .Printer Remote Stack Overflow in .printer module
1S 5.0 WebDav Remote Stack Overflow in WebDav module v v
e : : - om -

ST T e e T R R ST e

Informing client that we got a connection

Setting client success flag!

Starting up a win32 Library Call client

Win32 Syscall server recieved all data
esp=0x009b45a0

Loadlibrarya=0x77e89f64
GetProcAddress=0x77e80bl8calling TlsSetValue(0,0)
PEB=0x7ffdf000

ProcessHeap2=0x00070000

Number of heaps is &

Creating Heap

Newheap=00a30000

New PEB Heap is 77fcfaon

Setting 16 memory words at 77FCF800 to newheap
STAR New PEB Heap is 00a30000

P L mAanR mEoa A

Ilustration 1CANVAS successfully attacks a target via the MSRPC Heap
Overflow

Now, of course, it remains to be seen how reliable this technique is. It works very
well against my SP3 Unpatched box. But it's possible that after some testing on
different machines, it may have to change, as the pattern of allocations in RPCSS
becomes better understood. In fact, there is actually a tree of decisions that I
made in order to accomplish this exploit, and I will have to walk down the entire
tree to find out if there are any more reliable solutions to the complex equation
that is this exploit.

In fact, like many heap overflows, this one has corrupted vital parts of the heap
that I need to repair before I can do complex things like run a command shell. But
the hard part is over. My shellcode stub is communicating with me and I have full
control of the program.

